The Runx3 transcription factor regulates development and survival of TrkC dorsal root ganglia neurons.
نویسندگان
چکیده
The RUNX transcription factors are important regulators of linage-specific gene expression in major developmental pathways. Recently, we demonstrated that Runx3 is highly expressed in developing cranial and dorsal root ganglia (DRGs). Here we report that within the DRGs, Runx3 is specifically expressed in a subset of neurons, the tyrosine kinase receptor C (TrkC) proprioceptive neurons. We show that Runx3-deficient mice develop severe limb ataxia due to disruption of monosynaptic connectivity between intra spinal afferents and motoneurons. We demonstrate that the underlying cause of the defect is a loss of DRG proprioceptive neurons, reflected by a decreased number of TrkC-, parvalbumin- and beta-galactosidase-positive cells. Thus, Runx3 is a neurogenic TrkC neuron-specific transcription factor. In its absence, TrkC neurons in the DRG do not survive long enough to extend their axons toward target cells, resulting in lack of connectivity and ataxia. The data provide new genetic insights into the neurogenesis of DRGs and may help elucidate the molecular mechanisms underlying somatosensory-related ataxia in humans.
منابع مشابه
Dynamic regulation of the expression of neurotrophin receptors by Runx3.
Sensory neurons in the dorsal root ganglion (DRG) specifically project axons to central and peripheral targets according to their sensory modality. However, the molecular mechanisms that govern sensory neuron differentiation and the axonal projections remain unclear. The Runt-related transcription factors, Runx1 and Runx3, are expressed in DRG neuronal subpopulations, suggesting that they might...
متن کاملThe transcription factor Runx3 represses the neurotrophin receptor TrkB during lineage commitment of dorsal root ganglion neurons.
Runx3, a Runt domain transcription factor, determines neurotrophin receptor phenotype in dorsal root ganglion (DRG) neurons. Molecular mechanisms by which Runx3 controls distinct neurotrophin receptors are largely unknown. Here, we show that RUNX3 abolished mRNA induction of TRKB expression, and concomitantly altered the neurotrophin response in a differentiating neuroblastoma cell line. In con...
متن کاملPhylogenesis and regulated expression of the RUNT domain transcription factors RUNX1 and RUNX3.
The RUNX transcription factors are key regulators of lineage specific gene expression in developmental pathways. The mammalian RUNX genes arose early in evolution and maintained extensive structural similarities. Sequence analysis suggested that RUNX3 is the most ancient of the three mammalian genes, consistent with its role in neurogenesis of the monosynaptic reflex arc, the simplest neuronal ...
متن کاملGroucho/transducin-like Enhancer-of-split (TLE)-dependent and -independent transcriptional regulation by Runx3.
Regulation of gene expression by tissue-specific transcription factors involves both turning on and turning off transcription of target genes. Runx3, a runt-domain transcription factor, regulates cell-intrinsic functions by activating and repressing gene expression in sensory neurons, dendritic cells (DC), and T cells. To investigate the mechanism of Runx3-mediated repression in an in vivo cont...
متن کاملA Role for Runx Transcription Factor Signaling in Dorsal Root Ganglion Sensory Neuron Diversification
Subpopulations of sensory neurons in the dorsal root ganglion (DRG) can be characterized on the basis of sensory modalities that convey distinct peripheral stimuli, but the molecular mechanisms that underlie sensory neuronal diversification remain unclear. Here, we have used genetic manipulations in the mouse embryo to examine how Runx transcription factor signaling controls the acquisition of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The EMBO journal
دوره 21 13 شماره
صفحات -
تاریخ انتشار 2002